Lipschitz functions and bad metrics.

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Measurable metrics, intrinsic metrics and Lipschitz functions

In the paper [29], N. Weaver introduced the notion of measurable metric and that of Lipschitz function with respect to such a metric. The study of these notions was pursued by the same author in subsequent papers ([30, 32, · · ·]) and in the book [31]. In our paper [16], we treated various important examples and, in particular, we studied the intrinsic measurable metric associated with a local ...

متن کامل

Volumes and Areas of Lipschitz Metrics

Methods of estimating (Riemannian and Finsler) filling volumes by using nonexpanding maps to Banach spaces of L∞-type are developed and generalized. For every Finsler volume functional (such as the Busemann volume or the Holmes– Thompson volume), a natural extension is constructed from the class of Finsler metrics to all Lipschitz metrics, and the notion of area is defined for Lipschitz surface...

متن کامل

Controlling Lipschitz functions

Given any positive integers m and d, we say the a sequence of points (xi)i∈I in Rm is Lipschitz-d-controlling if one can select suitable values yi (i ∈ I) such that for every Lipschitz function f : Rm → Rd there exists i with |f(xi)−yi| < 1. We conjecture that for every m ≤ d, a sequence (xi)i∈I ⊂ Rm is d-controlling if and only if sup n∈N |{i ∈ I : |xi| ≤ n}| nd =∞. We prove that this conditio...

متن کامل

Interpolation of Lipschitz functions

This paper describes a new computational approach to multivariate scattered data interpolation. It is assumed that the data is generated by a Lipschitz continuous function f. The proposed approach uses the central interpolation scheme, which produces an optimal interpolant in the worst case scenario. It provides best uniform error bounds on f, and thus translates into reliable learning of f. Th...

متن کامل

Bandlimited Lipschitz Functions

We study the space of bandlimited Lipschitz functions in one variable. In particular we provide a geometrical description of interpolating and sampling sequences for this space. We also give a description of the trace of such functions to sequences of critical density in terms of a cancellation condition.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Michigan Mathematical Journal

سال: 1975

ISSN: 0026-2285

DOI: 10.1307/mmj/1029001316